

Approval body for construction products
and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and
Laender Governments

★ ★ ★
★ Designated
according to
Article 29 of Regula-
tion (EU) No 305/2011
and member of EOTA
(European Organi-
sation for Technical
Assessment)
★ ★ ★
★ ★

European Technical Assessment

ETA-16/0655
of 2 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the
European Technical Assessment:

Trade name of the construction product

Product family
to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment
contains

This European Technical Assessment is
issued in accordance with Regulation (EU)
No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Screwbolt TSM

Mechanical fastener for use in concrete

Sikla Holding GmbH
Kornstraße 4
4614 MARCHTRENK
ÖSTERREICH

Sikla Herstellwerk 2

19 pages including 3 annexes which form an integral part
of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-16/0655 issued on 19 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The Screwbolt TSM is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B 2, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Displacements	See Annex C 6
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C 2 to C 4, C 7

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5

3.3 Aspects of durability linked with the Basic Works Requirements

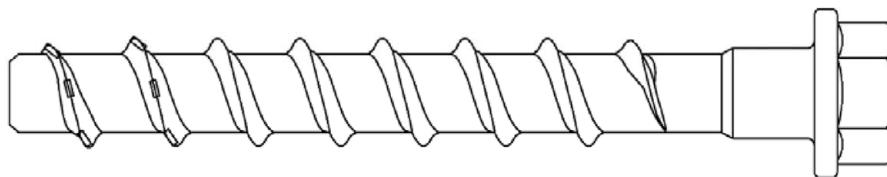
Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

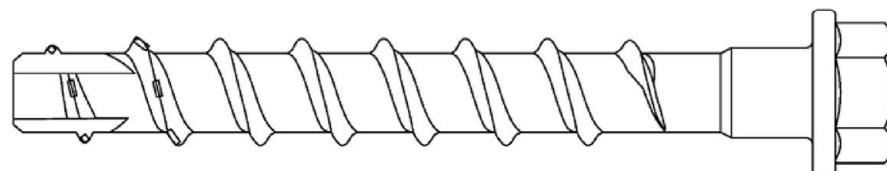
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

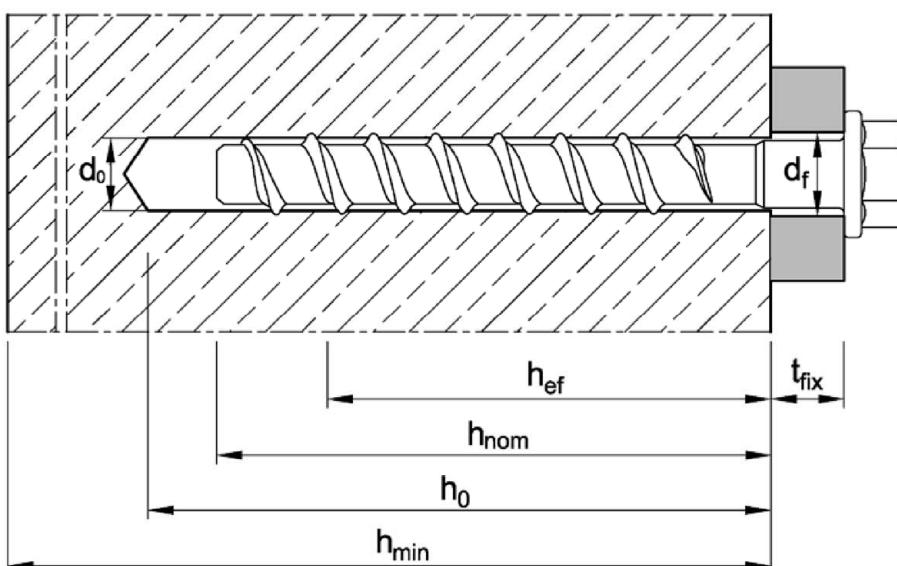

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 December 2021 by Deutsches Institut für Bautechnik

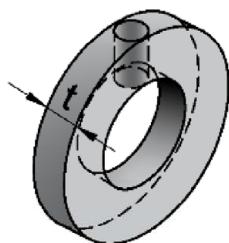

Dipl.-Ing. Beatrix Wittstock
Head of Section

Beglubigt
Baderschneider

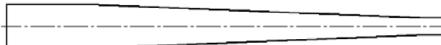
Screwbolt TSM



TSM zinc plated
TSM A4
TSM HCR


Installation situation in concrete

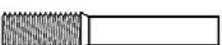
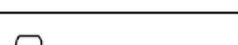
(e.g. Screwbolt TSM with hexagon head and pressed-on washer)

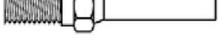


d_0 = nominal drill bit diameter
 h_{ef} = effective anchorage depth
 h_{nom} = nominal embedment depth
 h_0 = depth of the drill hole
 h_{min} = minimum thickness of member
 t_{fix} = thickness of fixture
 d_f = diameter of clearance hole in the fixture

Filling washer and reducing adapter for filling the annular gap between screwbolt and fixture

thickness of filling washer
 $t = 5 \text{ mm}$


Screwbolt TSM

Product description

Product and installation situation

Annex A1

Table A1: Anchor types and description

Anchor types		TSM -	Description	
1			BI	Anchor version with metric connection thread and hexagon socket
2			B	Anchor version with metric connection thread and hexagon drive
3			SU...TX	Anchor version with hexagon head, pressed-on washer and TORX drive
4			SU	Anchor version with hexagon head and pressed-on washer
5			SUB	Anchor version with hexagon head and collar
6			S	Anchor version with hexagon head
7			SK	Anchor version with countersunk head and TORX drive
8			LK	Anchor version with pan head and TORX drive
9			LP	Anchor version with large pan head and TORX drive
10			BSK	Anchor version with countersunk head and metric connection thread
11			ST	Anchor version with hexagon drive and metric connection thread
12			IM	Anchor version with internal thread and hexagon drive

Screwbolt TSM

Product description

Anchor types and description

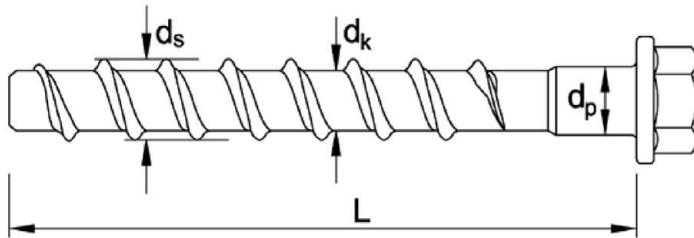


Annex A2

Table A2: Dimensions

Anchor size		TSM 6			TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth h_{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
Length of the anchor $L \leq$	[mm]	500														
Core diameter d_k	[mm]	5,1		7,1			9,1			11,1			13,1			
Outside diameter d_s	[mm]	7,5		10,6			12,6			14,6			16,6			
Shaft diameter d_p	[mm]	5,7		7,9			9,9			11,7			13,7			

Marking e.g.: \diamond BSZ 10 100

or TSM 10 100

\diamond BSZ or TSM Trade name
TSM (optional with manufacturer identification \diamond)

10 Anchor size

100 Length of anchor

additional marking:

A4 stainless steel

HCR high corrosion resistant steel

BC ST version with hexagon head and collar

Table A3: Materials

Version	Steel, zinc plated TSM	Stainless steel TSM A4	High corrosion resistant steel TSM HCR
Material	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 ($\geq 5\mu\text{m}$)	1.4401, 1.4404, 1.4571, 1.4578	1.4529
Nominal characteristic steel yield strength $f_{y\text{k}}$		560 N/mm ²	
Nominal characteristic steel ultimate strength $f_{u\text{k}}$		700 N/mm ²	
Elongation at fracture A_s		$\leq 8\%$	

Screwbolt TSM

Product description

Dimensions, marking and materials

Annex A3

Specifications of Intended use

Screwbolt TSM		TSM 6		TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth h_{nom} [mm]		40	55	45	55	65	55	75	85	65	85	100	75	100	115
Anchorage subject to	Static or quasi-static loading														✓
	Fire exposure														✓
	Seismic action C1 (zinc plated, A4, HCR)														Tension load: BI, B, SU...TX, SU, S, SK, LK, LP, BSK, ST, IM Shear load: BI, B, SU...TX, SU, S, SK, LK, LP
		✓	1)	✓	✓	1)	✓	1)	✓	1)	✓	✓	1)	✓	✓
Base material	Seismic action C2 (zinc plated)														Tension load and shear load: with filled annular gap: BI, B, SU...TX, SU, S, LK, LP without filled annular gap: BI, B, SU...TX, SU, S, SK ²⁾ , LK, LP
		1)	1)	✓	1)	1)	✓	1)	✓	1)	✓	✓	1)	✓	✓
	Cracked or uncracked concrete														✓
	Reinforced or unreinforced concrete (without fibres) acc. to EN 206:2013+A1:2016														✓
	Strength classes according to EN 206:2013+A1:2016, C20/25 to C50/60														✓

¹⁾ no performance assessed

²⁾ Version SK, TSM 8 and TSM 10

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015:
 - stainless steel A4, according to Annex A3, Table A3: CRC III
 - high corrosion resistant steel HCR, according to Annex A3, Table A3: CRC V

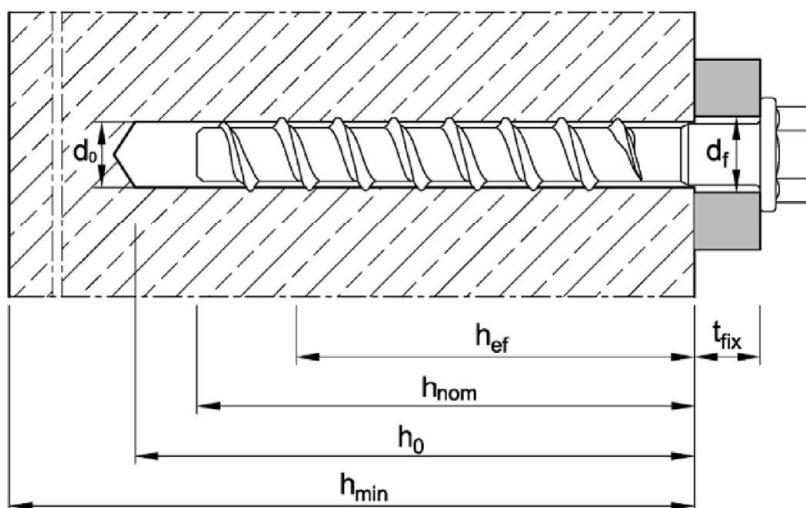
Design:

- Anchorage are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design method of anchorages according to EN 1992-4:2018 (if necessary in connection with EOTA Technical Report TR 055, version February 2018)

Installation:

- Making of drill hole by hammer drilling or vacuum drill bit.
When using a vacuum drill bit no drill hole cleaning is required.
- Anchor installation carried out by appropriately qualified personal and under the responsibility of the person responsible for technical matters on site.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The borehole may be filled with the Injection Systems VME or VME plus.
- Adjustment according to Annex B5 (except for anchorages with filled borehole and anchorages subject to seismic action).

Screwbolt TSM


Intended use
Specifications

Annex B1

Table B1: Installation parameters

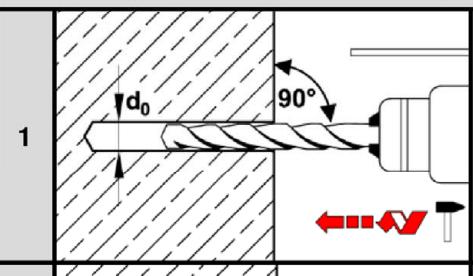
Anchor size		TSM 6		TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth	h_{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Nominal drill bit diameter	d_0 [mm]	6		8			10			12			14		
Cutting diameter of drill bit	d_{cut} [mm]	6,40		8,45			10,45			12,50			14,50		
Effective anchorage depth	h_{ef} [mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Depth of drill hole	$h_0 \geq$ [mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125
Diameter of clearance hole in the fixture	$d_f \leq$ [mm]	8		12			14			16			18		
Max. installation torque for screws with metric connection thread	$T_{\text{inst}} \leq$ [Nm]	10		20			40			60			80		
Tangential impact screw driver ¹⁾	$T_{\text{imp,max}}$ [Nm]	160		300			400			650			650		

¹⁾ Installation with tangential impact screw driver, with maximum power output $T_{\text{imp,max}}$ acc. to manufacturer's instructions is possible

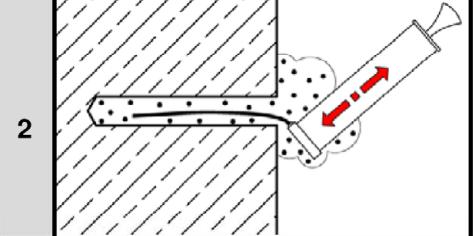
Table B2: Minimum thickness of member, minimum edge distance and minimum spacing

Anchor size		TSM 6		TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth	h_{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Minimum thickness of member	h_{min} [mm]	100		100			120			100			130		
Minimum spacing	s_{min} [mm]	40		40			50			50			70		
Minimum edge distance	c_{min} [mm]	40		40			50			50			70		

Screwbolt TSM

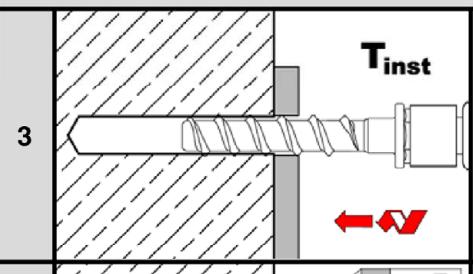

Intended use

Installation parameters / Minimum thickness of concrete member, minimum spacing and edge distance

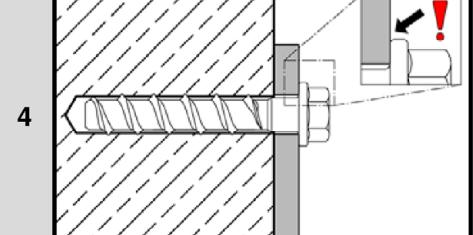

Annex B2

Installation instructions

Drill hole preparation and cleaning



Drill hole perpendicular to concrete surface.
Using a vacuum drill, continue with step 3.

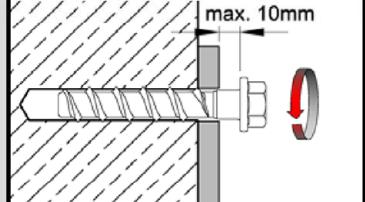
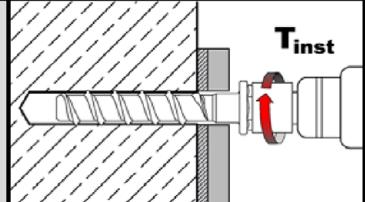
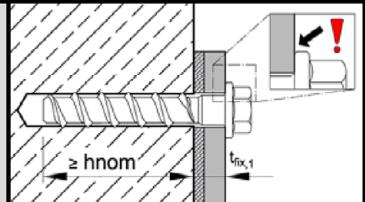


Blow out dust or alternatively vacuum clean down to the bottom of the hole.

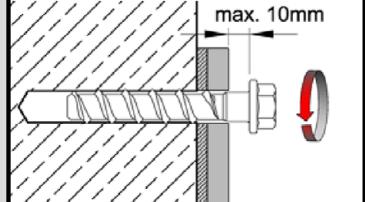
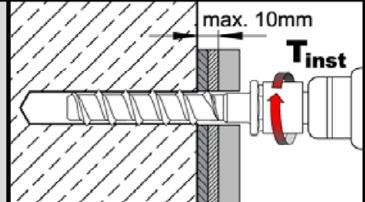
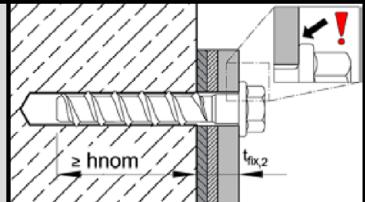
Installation Screwbolt

Screw in, e.g. with tangential impact screw driver or torque wrench.

After installation, the head of the anchor is supported on the fixture and must be undamaged.




Screwbolt TSM

Intended use
Installation instructions




Annex B3

Installation instructions - Adjustment

1. Adjustment

5		Screw may be untightened maximum 10mm.
6		After adjustment, screw in the concrete screw with tangential impact screw driver or torque wrench.
7		After installation, the head of the anchor is supported on the fixture must be undamaged.

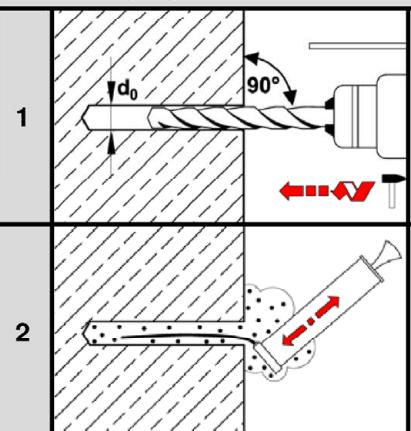
2. Adjustment

8		Screw may be untightened maximum 10mm.
9		After adjustment, screw in the concrete screw with tangential impact screw driver or torque wrench.
10		After installation, the head of the anchor is supported on the fixture and must be undamaged.

Note:

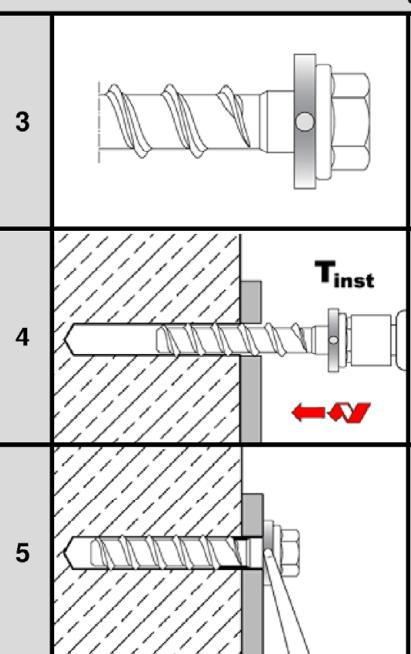
The fastener may be adjusted max. 2x. The fastener must not be screwed back by more than 10mm in each case. The relining carried out during adjustment must not exceed 10 mm in total. Nominal embedment depth h_{nom} must still be maintained after the adjustment.

Screwbolt TSM


Intended use

Installation instructions - Adjustment

Annex B4


Installation instructions - filling of annular gap

Drill hole preparation and cleaning

Drill hole perpendicular to concrete surface.
Using a vacuum drill, continue with step 3.

Installation Screwbolt with filling washer

Fit the filling washer to the Screwbolt.
The thickness of the filling washer must be taken into account with t_{fix} .

Screw in, e.g. with tangential impact screw driver or torque wrench.

Fill the annular gap between Screwbolt and fixture with mortar (compressive strength $\geq 40 \text{ N/mm}^2$, e.g. Injection mortar VMH, VMZ or VMU plus). Use enclosed reducing adapter. Observe information on processing of the mortar!
The annular gap is completely filled, when excess mortar seeps out.

For seismic loading, the application with and without filling of annular gap is permitted (Annex C3-C4).

Screwbolt TSM

Intended use

Installation instructions with filling of annular gap

Annex B5

Table C1: Characteristic values for static or quasi-static loads

Anchor size		TSM 6		TSM 8			TSM 10			TSM 12			TSM 14														
Nominal embedment depth	h_{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115												
Installation factor	γ_{inst} [-]	1,0																									
Tension load																											
Steel failure																											
Characteristic resistance	$N_{Rk,s}$ [kN]	14		27			45			67			94														
Partial factor	$\gamma_{Ms,N}$ [-]	1,5																									
Pull-out																											
Characteristic resistance in concrete C20/25	cracked	$N_{Rk,p}$ [kN]	2,0	4,0	5,0	9,0	12	9,0	$\geq N_{Rk,c}^0$ ¹⁾	12	$\geq N_{Rk,c}^0$ ¹⁾	$\geq N_{Rk,c}^0$ ¹⁾															
	uncracked	$N_{Rk,p}$ [kN]	4,0	9,0	7,5	12	16	12	20	26	16																
Increasing factor for $N_{Rk,p}$ $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψ_c [-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$																									
Concrete cone failure																											
Effective anchorage depth	h_{ef} [mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92												
Spacing	$s_{cr,N}$ [mm]	3 h_{ef}																									
Edge distance	$c_{cr,N}$ [mm]	1,5 h_{ef}																									
Factor k_1	cracked	$k_{cr,N}$ [-]	7,7																								
	uncracked	$k_{ucr,N}$ [-]	11,0																								
Splitting																											
Characteristic resistance	$N_{Rk,sp}$ [kN]	min [$N_{Rk,p}$; $N_{Rk,c}^0$ ¹⁾]																									
Spacing	$s_{cr,sp}$ [mm]	120	160	120	140	150	140	180	210	150	210	240	180	240	280												
Edge distance	$c_{cr,sp}$ [mm]	60	80	60	70	75	70	90	105	75	105	120	90	120	140												
Shear load																											
Steel failure without lever arm																											
Characteristic resistance	$V_{Rk,s}^0$ [kN]	7,0		13,5			17,0			22,5			34,0														
Partial factor	$\gamma_{Ms,V}$ [-]	1,25																									
Ductility factor	k_7 [-]	0,8																									
Steel failure with lever arm																											
Characteristic bending resistance	$M_{Rk,s}^0$ [Nm]	10,9		26			56			113			185														
Concrete pry-out failure																											
Pry-out factor	k_8 [-]	1,0		1,0			1,0			2,0			1,0														
Concrete edge failure																											
Effective length of anchor	$l_f = h_{\text{ef}}$ [mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92												
Outside diameter of anchor	d_{nom} [mm]	6		8			10			12			14														

¹⁾ $N_{Rk,c}^0$ according to EN 1992-4:2018

Screwbolt TSM

Performance

Characteristic values for static or quasi-static loads

Annex C1

Table C2: Characteristic values for **seismic loading**, performance category C1

Anchor size		TSM 6		TSM 8		TSM 10		TSM 12		TSM 14	
Nominal embedment depth	h_{nom} [mm]	40	55	65		55	85	100		115	
Installation factor	γ_{inst}	[-]						1,0			
Tension load Version: BI, B, SU...TX, SU, S, SK, LK, LP, BSK, ST, IM											
Steel failure											
Characteristic resistance	$N_{Rk,s,C1}$ [kN]	14		27		45		67		94	
Partial factor	γ_{Ms}	[-]						1,5			
Pull-out											
Characteristic resistance	$N_{Rk,p,C1}$ [kN]	2,0	4,0	12	9,0						$\geq N_{Rk,c}^0$ ¹⁾
Concrete cone failure											
Effective anchorage depth	h_{ef} [mm]	31	44	52	43	68	80			92	
Spacing	$S_{\text{cr},N}$ [mm]							3 h_{ef}			
Edge distance	$C_{\text{cr},N}$ [mm]							1,5 h_{ef}			
Shear load Version: BI, B, SU...TX, SU, S, SK, LK, LP											
Steel failure without lever arm											
Characteristic resistance	$V_{Rk,s,C1}$ [kN]	4,7	5,5	8,5	13,5	15,3	21,0				22,4
Partial factor	γ_{Ms}	[-]						1,25			
Concrete pry-out failure											
Pry-out factor	k_8	[-]		1,0						2,0	
Concrete edge failure											
Effective length of anchor	$l_r = h_{\text{ef}}$ [mm]	31	44	52	43	68	80			92	
Outside diameter of anchor	d_{nom} [mm]	6		8		10		12		14	
Factor for filling of annular gap											
<u>with</u> filling of annular gap (acc. to Annex B5, figure 5)	α_{gap}	[-]						1,0			
<u>without</u> filling of annular gap (acc. to Annex B3)	α_{gap}	[-]						0,5			

¹⁾ $N_{Rk,c}^0$ for concrete strength class C20/25, according to EN 1992-4:2018

Screwbolt TSM

Performance
Characteristic resistance for **seismic loading**, performance category C1

Annex C2

Table C3: Characteristic values for **seismic loading**, performance category **C2**, **with filling of annular gap**, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h_{nom}	[mm]	65	85	100	115
Installation factor	γ_{inst}	[-]		1,0		
Tension load	Version: BI, B, SU...TX, SU, S, LK, LP					
Steel failure						
Characteristic resistance	$N_{Rk,s,C2}$	[kN]	27	45	67	94
Partial factor	γ_{Ms}	[-]		1,5		
Pull-out						
Characteristic resistance	$N_{Rk,p,C2}$	[kN]	2,4	5,4	7,1	10,5
Concrete cone failure						
Effective anchorage depth	h_{ef}	[mm]	52	68	80	92
Spacing	$s_{\text{cr},N}$	[mm]		3 h_{ef}		
Edge distance	$c_{\text{cr},N}$	[mm]		1,5 h_{ef}		
Shear load	Version: BI, B, SU...TX, SU, S, LK, LP					
Steel failure without lever arm						
Characteristic resistance	$V_{Rk,s,C2}$	[kN]	9,9	18,5	31,6	40,7
Partial factor	γ_{Ms}	[-]		1,25		
Concrete pry-out failure						
Pry-out factor	k_8	[-]	1,0		2,0	
Concrete edge failure						
Effective length of anchor	$l_f = h_{\text{ef}}$	[mm]	52	68	80	92
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	14
Factor for filling of annular gap						
with filling of annular gap (acc. to Annex B5, figure 5)	α_{gap}	[-]		1,0		
Screwbolt TSM						
Performance Characteristic resistance for seismic loading , performance category C2 with filling of annular gap						Annex C3

Table C4: Characteristic values for **seismic loading**, performance category **C2, without filling of annular gap**, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14				
Nominal embedment depth		h_{nom} [mm]	65	85	100	115				
Installation factor		γ_{inst} [-]	1,0							
Tension loads										
Steel failure		Version: BI, B, SU...TX, SU, S, LK, LP								
Characteristic resistance		$N_{Rk,s,C2}$ [kN]	27	45	67	94				
Partial factor		γ_{Ms} [-]	1,5							
Pull-out		Version: BI, B, SU...TX, SU, S, LK, LP								
Characteristic resistance		$N_{Rk,p,C2}$ [kN]	2,4	5,4	7,1	10,5				
Steel failure		Version: SK								
Characteristic resistance		$N_{Rk,s,C2}$ [kN]	27	45	no performance assessed					
Partial factor		γ_{Ms} [-]	1,5							
Pull-out		Version: SK								
Characteristic resistance		$N_{Rk,p,C2}$ [kN]	2,4	5,4	no performance assessed					
Concrete cone failure		Version: BI, B, SU...TX, SU, S, SK, LK, LP								
Effective anchorage depth		h_{ef} [mm]	52	68	80	92				
Spacing		$s_{cr,N}$ [mm]	3 h_{ef}							
Edge distance		$c_{cr,N}$ [mm]	1,5 h_{ef}							
Shear loads										
Steel failure without lever arm		Version: BI, B, SU...TX, SU, S, SK, LK, LP								
Characteristic resistance		$V_{Rk,s,C2}$ [kN]	10,3	21,9	24,4	23,3				
Partial factor		γ_{Ms} [-]	1,25							
Steel failure without lever arm		Version: SK								
Characteristic resistance		$V_{Rk,s,C2}$ [kN]	3,6	13,7	no performance assessed					
Partial factor		γ_{Ms} [-]	1,25							
Concrete pry-out failure		Version: BI, B, SU...TX, SU, S, SK, LK, LP								
Pry-out factor		k_8 [-]	1,0	2,0						
Concrete edge failure		Version: BI, B, SU...TX, SU, S, SK, LK, LP								
Effective length of anchor		$l_f = h_{\text{ef}}$ [mm]	52	68	80	92				
Outside diameter of anchor		d_{nom} [mm]	8	10	12	14				
Factor for annular gap without filling of annular gap		α_{gap} [-]	0,5							

Screwbolt TSM

Performance

Characteristic resistance for **seismic loading**, performance category **C2**
without filling of annular gap

Annex C4

Table C5: Characteristic values of resistance under fire exposure

Anchor size		TSM 6		TSM 8			TSM 10			TSM 12			TSM 14																							
Nominal anchorage depth	h_{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115																					
Steel failure (tension and shear resistance)																																				
Characteristic resistance	R30	$N_{Rk,s,fi}$ = $V_{Rk,s,fi}$	[kN]	0,9	2,4		4,4			7,3			10,3																							
	R60			0,8	1,7		3,3			5,8			8,2																							
	R90			0,6	1,1		2,3			4,2			5,9																							
	R120			0,4	0,7		1,7			3,4			4,8																							
Steel failure with lever arm																																				
Characteristic bending resistance	R30	$M_{Rk,s,fi}^0$	[Nm]	0,7	2,4		5,9			12,3			20,4																							
	R60			0,6	1,8		4,5			9,7			15,9																							
	R90			0,5	1,2		3,0			7,0			11,6																							
	R120			0,3	0,9		2,3			5,7			9,4																							
Edge distance	$c_{cr,fi}$	[mm]	2 h_{ef}																																	
In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm																																				
Spacing	$s_{cr,fi}$	[mm]	4 h_{ef}																																	
The characteristic resistance for pull-out $N_{Rk,p,fi}$, concrete cone failure $N_{Rk,c,fi}^0$, concrete pry-out $V_{Rk,cp,fi}$ and concrete edge failure $V_{Rk,c,fi}^0$ shall be calculated according to EN 1992-4:2018.																																				
The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given values																																				

Screwbolt TSM

Performance

Characteristic values of resistance under **fire exposure**

Annex C5

Table C6: Displacements under static or quasi-static loads

Anchor size		TSM 6		TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth h_{nom} [mm]		40	55	45	55	65	55	75	85	65	85	100	75	100	115
Tension load															
cracked concrete	Tension load N [kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	5,7	9,4	12,3	7,6	12,0	15,1
	δ_{N0} [mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	0,9	0,5	1,0	0,5	0,8	0,7
	Displacement $\delta_{N\infty}$ [mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
uncracked concrete	Tension load N [kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	7,6	13,2	17,2	10,6	16,9	21,2
	δ_{N0} [mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	1,0	1,1	1,2	0,9	1,2	0,8
	Displacement $\delta_{N\infty}$ [mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
Shear load															
Shear load V [kN]	3,3	8,6			16,2			20,0			30,5				
	δ_{V0} [mm]	1,55	2,7			2,7			4,0			3,1			
	Displacement $\delta_{V\infty}$ [mm]	3,1	4,1			4,3			6,0			4,7			

Screwbolt TSM

Performance

Displacements under static or quasi-static loads

Annex C6

Table C7: Displacements under seismic loading, performance category C2 with filling of annular gap, Screwbolt TSM zinc plated

Anchor size		TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h_{nom} [mm]	65	85	100	115
Tension load					
Version: BI, B, SU...TX, SU, S, LK, LP					
Displacement DLS	$\delta_{N,C2(DLS)}$ [mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{N,C2(ULS)}$ [mm]	1,74	1,36	2,36	4,39
Shear load					
Version: BI, B, SU...TX, SU, S, LK, LP (with clearance hole)					
Displacement DLS	$\delta_{V,C2(DLS)}$ [mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta_{V,C2(ULS)}$ [mm]	5,19	6,72	5,37	9,27

Table C8: Displacements under seismic loading, performance category C2 without filling of annular gap, Screwbolt TSM zinc plated

Anchor size		TSM 8	TSM 10	TSM 12	TSM 14		
Nominal embedment depth	h_{nom} [mm]	65	85	100	115		
Tension load							
Version: BI, B, SU...TX, SU, S, LK, LP							
Displacement DLS	$\delta_{N,C2(DLS)}$ [mm]	0,66	0,32	0,57	1,16		
Displacement ULS	$\delta_{N,C2(ULS)}$ [mm]	1,74	1,36	2,36	4,39		
Version: SK							
Displacement DLS	$\delta_{N,C2(DLS)}$ [mm]	0,66	0,32	no performance assessed			
Displacement ULS	$\delta_{N,C2(ULS)}$ [mm]	1,74	1,36				
Shear load							
Version: BI, B, SU...TX, SU, S, LK, LP (with clearance hole)							
Displacement DLS	$\delta_{V,C2(DLS)}$ [mm]	4,21	4,71	4,42	5,60		
Displacement ULS	$\delta_{V,C2(ULS)}$ [mm]	7,13	8,83	6,95	12,63		
Version: SK (with clearance hole)							
Displacement DLS	$\delta_{V,C2(DLS)}$ [mm]	2,51	2,98	no performance assessed			
Displacement ULS	$\delta_{V,C2(ULS)}$ [mm]	7,76	6,25				
Screwbolt TSM							
Performance Displacements under seismic loading, performance category C2							
Annex C7							